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ABSTRACT: The theories that predict the increase in the
modulus of elastomers resulting from the presence of a
rigid filler are typically derived from Einstein’s viscosity
law. For example, Guth and Gold used this approach to
predict how the Young’s modulus of an elastomer is
related to the filler volume fraction. Hon et al. have shown
using finite element microstructural models that stiffness
predictions at small strains were also possible. Here,
microstructural finite element models have been used to
investigate the modulus of filled elastomer over a wider
range of strains than has been possible previously. At
larger strains, finite extensibility effects are significant and
here an appropriate stored energy function proposed by

Gent was adopted. In this work, the effect of spherical
MT-type carbon-black filler behavior was considered. Dif-
ferent models were made and the results were then com-
pared to experimental measurement of the stiffness taken
from the literature. It is shown that the boundary condi-
tions of the microstructural unit cell lie between the two
extremes of free surfaces and planar surfaces. Also as the
filler volume fraction increases then the number of filler
particles required in the representative volume to predict
the actual stiffness behavior also increases. © 2007 Wiley
Periodicals, Inc. ] Appl Polym Sci 107: 2572-2577, 2008
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INTRODUCTION

Elastomers deform to large strains under load and
recover to their original shape upon unloading. Rein-
forcing rigid fillers such as carbon black are added
to elastomers to increase the mechanical properties
such as the modulus, strength, and wear resistance.
The addition of these rigid fillers therefore increases
the range of properties available for using elastomers
in industrial applications.

A theory for the stiffening of elastomers by car-
bon-black fillers is based on Einstein’s theory'?* for
the increase in viscosity of a suspension due to the
presence of spherical colloidal particles. The Einstein
equation is given as

n =mo(1+25¢) 1)

where 7 is the viscosity of suspension, 7, is the vis-
cosity of the incompressible fluid, and ¢ is the vol-
ume fraction of the spherical particles.

Guth and Gold® and Smallwood* adapted the vis-
cosity law given in Eq. (1) to predict the modulus of
an elastomer filled with rigid spherical particles and
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they included an additional term to account for the
interaction of rigid fillers at larger filler volume frac-
tions. They proposed that the increase in the modu-
lus due to the incorporation of spherical rigid fillers
was given by

E =Eo(1+25+14.1¢%), )

where E is the modulus of the filled rubber, Ej is the
modulus of the unfilled rubber, and ¢ is the filler
volume fraction. This relation also assumes that the
carbon-black filler particles are spherical, well dis-
persed throughout the matrix, and that each is per-
fectly bonded to the rubber.

The prediction of the stiffness of filled rubber is
well described at small strains below about 10% by
the relationship derived by Guth and Gold® and
Smallwood.* Hon et al.” have shown that these stiff-
ness predictions at small strains were well repre-
sented using finite element microstructural models.
For moderate strain of less than 100%, Kashani and
Padovan® have shown that the mechanical properties
of filled rubbers follow a spring in series model, sim-
ilar to the one shown in Eq. (2). Further, the rubber
matrix and rigid fillers are in state of uniform stress
rather than state of uniform strain. However, at
larger strains these existing theories cannot predict
the stiffness accurately and the microstructural finite
element approach has not been tried. Hence, the
present work uses micro mechanical modeling to
predict large strain behavior including a considera-
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tion of the finite extensibility effects for filled elasto-
mers. A range of single rigid filler and four filler
models in an elastomer matrix have been investi-
gated. The precise boundary conditions applied to
the model are important. Two extreme boundary
conditions termed “plane surface’” and “‘free sur-
face” have been investigated. The behavior of
unfilled elastomers is frequently modeled using
Mooney stored energy function.” However, it is clear
that the Mooney equation cannot represent the finite
extensibility stiffening behavior at large strains.
Therefore, in this work, a more appropriate function
proposed by Gent® is used to predict the large strain
behavior and the effects of finite extensibility.

This investigation provides insight into rigid filler
reinforcement and the filler interaction mechanisms.
This study considers Medium Thermal (MT) carbon-
black filled rubber because of the large amount of
experimental data available in the literature. In addi-
tion, the simple spherical shape typical of MT car-
bon-black with its random spatial distribution and
low agglomeration is an ideal rigid filler to establish
the reliability of the modeling technique.

MATERIAL CHARACTERIZATION

To simulate the rubber—filler interaction using FEA,
the matrix elastomer behavior has to be characterized
first. Elastomeric materials are commonly character-
ized using stored energy functions, W, which can be
expressed as functions of strain invariants; thus,

W =f(h,I) 3)

I; and I, are the first and second strain invariants,
respectively. Rubber for the purpose of this work is
assumed to be isotropic and incompressible in bulk.
Mooney’ derived a two-term stored energy which has
the following form

W==Ci(lh —3)+Ca(l — 3) 4)

where C; and C, are material constants. The constants
C; and C, used in this work were derived from the
unfilled rubber stress versus strain measurements of
Mullins and Tobin.” This was achieved by plotting
the curve of reduced stress versus the inverse of
extension ratio. The curve fitting was done so that the
Mooney stored energy function represented the
behavior of the unfilled elastomer accurately up to
50% strain as shown in Figure 1. The constants used
in the Mooney SEF were C; = 0.1658 MPa and C, =
0.0598 MPa. Typically, the Mooney SEF reasonably
represents the behavior of an unfilled elastomer up to
100% strain in simple extension, although the fit for a
more general strain is less good.
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Figure 1 Comparisons of the experimental behavior of
the unfilled rubber’ with the stiffness fitted using the
Mooney and the Gent stored energy functions.

Gent® derived a SEF from empirical considerations
which has the form

bl (B e

In the above expression, E represents the low
strain tensile modulus and I, introduces a finite
extensibility asymptote. Gent's SEF is applicable
over large strains, gives a better fit at a higher
extension ratio, and can be used in any deformation
mode. This allows flexibility in terms of represent-
ing the behavior of an elastomer over a range of
strains. In the present case, E was fitted to represent
the small strain behavior accurately up to 50% strain
as shown in Figure 1. The finite extensibility term
was fitted to represent the behavior accurately at
600% strain. The constants used here were E = 1.29
MPa and I,, = 63.

As Mullins and Tobin’s data’ for unfilled rubber
were not available at higher extension ratio, the fit-
ting at higher extension ratio was carried out using
data acquired on a nominally identical unfilled
rubber examined by Harwood et al.'’ Figure 1
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Figure 2 Finite element analysis representation of MT
carbon-black filler embedded in rubber.

shows that Gent’s SEF shows a significant and real-
istic upsweep at the higher extension ratios to rep-
resent the finite extensibility of the elastomeric net-
work.

The Mooney SEF function is widely used in indus-
try especially for tensile loading conditions. Its use
here allows a comparison to be made between the
geometric stiffening behavior and the material nonli-
nearity which the Gent equation would also be able
to model at higher strains.

FINITE ELEMENT ANALYSIS

The filler particles, being much stiffer than the rub-
ber, were modeled as rigid spheres. Typical models
used in this work are shown in Figures 2 and 3. The
single-particle model, which assumed an idealized
packing array [Figs. 2 and 3(a)], exploited symmetry,
so that only 1/8th of the rubber around a single
rigid filler was modeled. The single rigid filler octant
symmetry models are shown in Figures 2 and 3(a,b).
The other models differed by either using an increased
number of particles in the model [Fig. 3(c-e)] or
altering the surface boundary conditions [Fig. 3(b,e)].
Different filler volume fractions can be created using
similar models just with either the size of the filler(s)
or the size of the unit cube altered slightly.

Two different types of boundary conditions were
used for the plane sides of the unit cells. The first
boundary condition assumed that all the surfaces are
plane and remain plane. The second model assumed
that some of the outer surfaces not in contact
directly with the rigid filler particle were free to
deform. The plane boundary conditions represent
the interactions present in the bulk of the elastomers
assuming that the fillers are evenly distributed with
perfect packing and the free-surface conditions rep-
resent the behavior that is more typical close to the
free surfaces of a filled rubber model.

Figure 3(c) shows a four rigid filler particle
model with an irregular distribution of particles.
The rubber was assumed to be perfectly bonded to
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the rigid filler. The four rigid filler particle model
with free-surface boundary condition is shown in
Figure 3(e). The two-symmetry plane model shown
as the front and right-hand face in Figure 3(e)
makes the four rigid filler particle model behave as
if it was a 16 rigid filler particle model. The models
were created using I-DEAS 9 preprocessor software
and were analyzed using ABAQUS v6.4 software.

RESULTS AND DISCUSSION

Hon et al.'’ showed that whilst stiffness predictions
at small strains were very good, the stiffness at large
strains and at higher filler volume fractions was
unrealistic for plane-surface models. This is because
the constraints applied in these models, that all the
surfaces remain plane, encounter a difficulty when
the deformed width of the unit cube approaches the
radius of the rigid filler. By examining such a cube
in simple extension it is possible to deduce the limit-
ing extension, A, at which the rigid filler particles
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Figure 3 Three-dimensional models showing maximum
principal stress contour plots at filler volume fraction of
13.8%. (a) Single-particle model plane-surface boundary
condition. (b) Free-surface boundary condition. (c) Four fil-
ler particle model. (d) Transparent view of plane-surface
boundary condition four filler particle model. (e) Free-sur-
face boundary conditions model. Four filler particle sym-
metry model; equivalent to 16 particles.
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Figure 4 Engineering stress versus extension ratio for MT
carbon-black filled rubber and models at 13.8% filler vol-
ume fraction. The limiting extension, A, of the planar-sur-
face single-particle model is shown as the asymptote
(Mooney stored energy function).

touch for a given volume fraction of filler as

2/3
ST

The plane-surface asymptotes are shown in Fig-
ures 4 and 5 as solid vertical lines for volume frac-
tions of 13.8% and 20.9%. These asymptotes were an
artefact of these particular models which did not
occur with a more realistic, random arrangement of
the rigid filler particles. To remove this artificial stiff-
ening an alternative single rigid filler unit cell
boundary condition was introduced, where the two
nonsymmetrical outer surfaces not in contact with
the rigid filler particle, that is, the right and back
surfaces as shown in Figure 3(b), were allowed to
move freely. This boundary condition is termed the
free-surface condition. Figure 3 shows the single
rigid filler models and the four rigid filler models
with a filler volume fraction of 13.8% displaying the
maximum principal stress contour plots. The intro-
duction of the free-surface boundary condition
causes the models to have lower stress compared to
the plane-surface model at equivalent global dis-
placement. In a previous work by Hon et al.® and
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again here the Mooney SEF was initially used to rep-
resent the material behavior.

Figure 4 shows the experimental data obtained by
Mullins and Tobin,” as well as the calculated values
for both the single rigid filler and four rigid filler
models with the plane-surface as well as the free-sur-
face boundary conditions modeled using the Mooney
SEF at a filler volume fraction of 13.8%. The limiting
extension effects were clearly absent in the free-sur-
face model. However, in comparison to the plane-sur-
face model, the calculated stress—strain behavior for
the single rigid filler model underestimated the exper-
imental behavior even at lower extensions. It is pro-
posed that this is due to two separate effects. Firstly,
that the free-surface boundary condition only repre-
sents the behavior of fillers nearer to the edges of rub-
ber which will have a softer stiffness response. In
practice, at larger filler volume fractions the behavior
will lie somewhere in between the two extremes of
plane surface and free surface. Secondly, the Mooney
SEF does not predict the finite extensibility behavior
of the rubber. The free-surface four-particle model
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Figure 5 Engineering stress versus extension ratio for MT
carbon-black filled rubber and models at 20.9% filler vol-
ume fraction. The limiting extension, A, of the planar-sur-
face single-particle model is shown as the asymptote
(Mooney stored energy function).

Journal of Applied Polymer Science DOI 10.1002/app



2576

shows a reasonable correlation with the experimental
data over a wide range of extension ratios until the
strains become large enough for finite extensibility
effects to become significant.

Figure 5 is similar to Figure 4 but this time for a
greater filler volume fraction of 20.9%. Again the
plane-surface model overestimated the stiffening due
to the limiting extension effect discussed previously.
In this case the four rigid filler models had large
local strains at relatively modest global strains. The
free-surface model only extended to a strain of 50%
before some elements became too distorted to allow
the model to be extended further. Before this limit is
reached though it is clear that the multiple rigid fil-
ler model is stiffer than the single rigid filler model.
It is also apparent that the stiffness of both models is
lower than the experimental data. It is proposed
therefore that as the filler volume fraction increases,
the significance of finite extensibility effect becomes
greater as a result of strain amplification.®

The next approach was to introduce a stored
energy function to model more realistically the finite
extensibility effect. The function chosen was that
proposed by Gent,® which was fitted to the literature
data.” The stiffness was fitted to the small strain
behavior as well as at an extension ratio of 7, as
shown in Figure 1. The Gent function now produces
an acceptable degree of fit to the measured stress
versus strain data of the entire range of strains.

All the models that had been made earlier were
reinvestigated with the material behavior described
by this stored energy function. Figure 6 shows the
results at a filler volume fraction of 13.8%. The free-
surface single rigid filler model using Gent SEF fol-
lows the experimental observed behavior more
closely than single rigid filler model based on
Mooney SEF. The free-surface four rigid filler
model using the Gent SEF now over predicts the
stiffness when compared with experimental ob-
served behavior. It is clear that the choice of SEF,
boundary conditions, and the representative num-
ber of rigid fillers particles are all important when
determining the appropriate model to represent the
stiffness behavior.

Figure 7 compares the Gent SEF results at a filler
volume of 20.9%. The single rigid filler model using
Gent SEF shows a significant upsweep when com-
pared with the model based on Mooney SEF. The
single rigid filler free-surface models using Gent’s
SEF now shows a softer response than the experi-
mentally observed behavior. The models that com-
bined both the Gent SEF and the four rigid filler par-
ticles were not able to deform to sensible extensions
as a result of very high local strain gradients and so
they are not shown here. It is thought though that as
the filler volume fraction is increased the significance
of the fillerfiller interaction becomes greater and
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Figure 6 Engineering stress versus extension ratio for MT
carbon-black filled rubber and models at 13.8% filler
volume fraction.

hence the models that incorporate only a single par-
ticle will increasingly underestimate the stiffness.

It is clear, however, that to predict the behavior at
higher filler volume fractions and at extension ratios
higher than 2, it is essential that a more realistic SEF
should be adopted.

Having undertaken this investigation a number of
questions arise. Firstly, in all cases an increase in the
number of particles in the representative volume at
a specific volume fraction results in an increase in
the predicted stiffness. Therefore, more than a single
particle will be required to predict the behavior for a
range of strains or volume fractions, but as yet it is
unknown exactly what the required number of par-
ticles would be to determine the behavior of all MT
carbon-black filled rubbers.

In the present case, the rigid filler was perfectly
bonded to the interface; it is thought that this is the
reason for the over prediction in the stiffness at a
volume fraction of 13.8% for the multiple rigid filler
particle model based on the Gent stored energy
function. Dannenberg'? suggested that at larger
strains there is some slippage of the rubber over the
rigid filler surface. Hence in future more appropriate
boundary conditions at the filler-rubber interface
could be investigated. This can be done by consider-
ing slippage at filler-rubber interface. Slippage at
filler-rubber interface will allow rigid filler particle
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Figure 7 Engineering stress versus extension ratio for MT
carbon-black filled rubber and models at 20.9% filler vol-
ume fraction.

to slide at an appropriate shear stress, causing a
decrease in the stiffness and an increase in the inter-
nal viscosity. This model will overcome the limita-
tion of perfectly bonded model presented here.

In addition, it is not clear as to how the precise
location alters the filler interaction and affects the
stiffness of the composite. The four rigid filler parti-
cle model shown in Figure 3(c) only reflected one
specific spatial arrangement of particles in the elasto-
meric matrix. Hence, future models should also con-
sider the effects of particle distribution. An ideal
rigid filler rubber model would probably be made
with a large number of filler particles randomly dis-
tributed in the elastomer matrix.
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CONCLUSIONS

Previous work by Hon et al.>'! has shown that a sin-
gle rigid filler (1/8th symmetry with perfect bond-
ing) microstructural model wusing plane-surface
boundary conditions was able to predict the behav-
ior of a MT carbon-black filled rubber well at small
strains. This work has shown that at larger strains
the boundary conditions become more important,
with a simple model either overestimating or under-
estimating the stiffness depending on the exact type
of boundary condition used. A four rigid (filler
model was used here which improved the predic-
tions of the stiffness behavior, but which still
resulted in either an overestimation or an underesti-
mation depending upon the exact boundary condi-
tions adopted and stored energy function used.
Strain amplification due to the presence of the rigid
filler results in local strains being significantly higher
than the globally applied strain; therefore, the Gent
stored energy function is more appropriate. Future
work should consider investigating what is the
required number of rigid fillers in a representative
volume to accurately model the behavior; this work
should also consider the importance of the spatial
arrangements, whereby effects such as filler cluster-
ing and occluded rubber may be expected to play a
part. The precise nature of the interfacial boundary
between the filler and rubber will impact the stiff-
ness behavior significantly and hence a more appro-
priate model which also incorporates slippage
should be considered.
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